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Hydrocarbon production systems generate huge 
data sets, often with time series stretching back 
decades. However, much of the data may be obso-
lete due to changing reservoir conditions and modi-
fications to assets, and there may be scant data 
close to optimal operating conditions due to the 
inadequacy of existing optimization tools. 

Data science, artificial intelligence (AI), and 
machine learning can contribute significantly to 
the optimization of production operations, and 
there is a trend toward hybrid AI, which combines 
data science with traditional physics-based simu-
lators to deliver added value.

Physics-guided machine learning can add tremen-
dous value to digitalization initiatives across a wide 
range of production optimization use cases and 
speed up decision processes that mitigate produc-
tion losses in complex industrial phenomena.

This paper explains how to use physical principles 
in feature engineering to improve machine learn-
ing outcomes. Equipped with energy, mass, and 
force balances; pressure, volume, and tempera-
ture (PVT) data for production fluids; and dimen-
sional and order-of-magnitude analyses, oil and 
gas companies can squeeze additional value from 
a pure data-based approach while avoiding expen-
sive, time-consuming, and often inaccurate simu-
lations.

Summary
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Artificial intelligence (AI) has been immensely 
successful in areas such as image recognition, 
natural language processing, advertising, and 
games — let’s call them classic applications of AI. 
However, for industries such as oil and gas and 
manufacturing, the success stories are fewer, 
despite the high value potential. This is because of 
the fundamental differences between the classic 
applications of AI and those used for industrial 
problems. 

There are four main reasons why:

⇢ One: For many of the classic applications of AI 
there are few or zero competing methods. One 
example: There are few mathematical models 
describing consumer behavior. In the oil and gas 
industry, in comparison, the majority of the prob-
lems are governed by the laws of physics and can 
be described using mathematical and phenome-
nological models that form the basis of advanced 
simulators. The industry has been using these 
simulators for decades to support critical decisions, 
and while the simulators have varying degrees of 
accuracy and uncertainty, users have an under-
standing of them and take uncertainty into account 
when making decisions based on their results.  

⇢ Two: For many of the classic applications of AI 
the consequence of an erroneous prediction is not 
severe, and the size of the error is often not import-

ant. As an example, if an irrelevant advertisement 
is displayed on a website, it’s not the end of the 
world. Either it results in a click or it doesn’t. For the 
oil and gas industry, the size of the error is usually 
critical. A small error in the predicted surge volume 
is usually not a problem, but a large error could lead 
to a trip or, worse, a flooding incident.

⇢ Three: For classic applications of AI the amount 
of training data may be enormous. For example, the 
ImageNet data set contains more than 14 million 
pictures. The amount of text available for natural 
language processing is almost unfathomable. For 
some applications it is even possible to automati-
cally generate training data. It is a common miscon-
ception that the oil and gas industry has large 
amounts of data. Although a typical installation 
will be instrumented with thousands of sensors 
that may have been collecting data for decades, 
the actual amount of relevant data is small.

⇢ Four: Finally, an important difference between 
some of the industries where AI has been success-
ful and the oil and gas industry is the quality of the 
data. A typical data set used by classic applications 
of AI will have no or negligible noise levels. Much 
of the data used in oil and gas engineering comes 
from physical sensors located in harsh environ-
ments, which means they are subject to varying 
degrees of noise and bias and different raw data 
compression levels. 

Machine learning has a clear value potential in 
the oil and gas industry, but it must go hand-in-
hand with physics.

Introduction
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Early in the Fourth Industrial Revolution it was 
widely believed that through digitalization all prob-
lems would be solved using AI, and that machine 
learning would replace mathematical models. That 
understanding is changing. AI and machine learn-
ing are increasingly seen as complementary tools 
to be used with existing industry-specific tools (for 
example physics simulators). One example of this 
is the use of mathematical modeling and feature 
engineering to reinforce a machine learning model.

Constructing physics-guided machine 
learning

Assume we want to predict a set of parameters 
Y from a set of observed variables X. Typically X 
represents our sensor data. We denote this rela-
tionship as

Y=f(X),

where f is our predictive model. One example of 
an application is where Y is a property that is not 
continuously measured, such as the quality of a 
product. Instead of only relying on infrequent spot 
samples, it is possible to create a model f that 
approximates the product quality Y based on the 
state X of the system. This is often called a virtual 
or soft sensor, and it is particularly useful when 
the results of spot samples are not available in time 

to carry out mitigating actions if the quality is not 
satisfactory.

There are several ways to create the model f. Histor-
ically this was done using physics insight and math-
ematical modeling. There are various techniques 
for deriving such models, where the most rigorous 
approach is based on first principles like conser-
vation and balance principles. Relevant examples 
are conservation of mass, momentum, volume, and 
energy, which are the foundation for many of the 
successful physics simulators used in the oil and 
gas industry.

Not all problems are easily described using first 
principles, or the resulting mathematical model 
may be too complex to be solved within a reason-
able time frame. An effective approach is to aver-
age effects in time or time and space, reducing the 
complexity of the phenomena that are modeled 
and sometimes also the number of spatial dimen-
sions. Turbulence modeling is an example of aver-
aging small-scale effects while hydraulic modeling 
is an example of averaging effects in entire spatial 
dimensions. 

On the other side of the spectrum we find empir-
ical or phenomenological modeling, where only 
measurements are used to derive the model. Pure 
machine learning belongs to this category. In 
between, there is a continuous range from rigor-

ous first-principle modeling to pure empirical 
modeling, and this is the area we want to explore to 
understand how we can construct physics-guided 
machine learning.

What is physics-guided machine learning?
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Mathematical modeling
vs machine learning

Let’s compare the strengths and weaknesses of 
the more rigorous physics simulators and machine 
learning methods: ►

Simulators and machine learning models clearly 
complement each other. Combining the two 
methods keeps the strengths and reduces the 
weaknesses.

Adding physics to machine learning 
models: a deep dive

One of the most fundamental problems in the oil 
and gas industry is pressure drop in a pipeline. This 
determines the maximum throughput for a given 
pipe length and diameter; alternatively, it shows 
the need for a pressure boost to meet a required 
flow rate.

For the purposes of this section, we will consider 
single-phase pressure drop measurements from 
two different laboratories¹ for six different fluids (He, 
O₂, N₂, Air, CO₂, and SF₆), two different pipes (both 
diameter D and roughness ϵ), different tempera-
tures T, different pressures P, and different veloci-
ties U, giving us six different input variables, where 
one is a categorical variable. Assuming we need 10 
data points per continuous variable to resolve the 
behavior, we need 105 experiments in total per fluid. 
In addition, reservoir fluids consist of thousands of 

different components, leading to a literally infinite 
number of possible compositions. This exponen-
tially increasing data requirement as a function of 
the number of input parameters is known as the 
curse of dimensionality. 

¹ Swanson, C. J., Julian, B., Ihas, G. G., and Donnelly, 
R.	J.	2002.	Pipe	flow	measurements	over	a	wide	
range of Reynolds numbers using liquid helium 
and various gases. J. Fluid Mech. 461, 51–60.

Zagarola,	M.	V.,	and	Smits,	A.	J.	1998.	Mean-flow	
scaling	of	turbulent	pipe	flow.	J.	Fluid	Mech.,	vol.	
373, pp. 33–79.

Physics simulators Machine learning

Can predict without access to historical data (from 
first oil)

Requires a large set of training data for relevant 
conditions

Tested, tried, and proven across industries, even 
for critical applications

Unproven; considered hard to interpret (“black 
box”)

Require a mathematical model derived from phys-
ics principles (not always possible)

Possible to set up without any knowledge of the 
underlying physics

Require a complete set of data such as boundary 
conditions, geometry, and fluid and material prop-
erties

Can work even on a small set of sensors (but may 
not be very accurate)

Can predict outside the range of data used to 
create and validate the model (with varying uncer-
tainty)

High uncertainty outside the range of the training 
data 

Can predict future events; transient models Fewer success stories for predicting time-depen-
dent problems

Provide all values from the equations at all posi-
tions in the numerical grid Provides only the output variables it was trained on
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Obviously it is not realistic to generate such a vast 
amount of data, so the goal in this example is to 
transform the input parameters into new features, 
which simplifies the problem the machine learning 
model needs to approximate. From fluid mechan-
ics we know that the pressure gradient depends 
on the pipe diameter D and the wall shear stress 
τ. The wall shear stress is not a measured quantity, 
but we know that the wall shear stress depends 
on the fluid density ρ and the velocity U. The fluid 
density is a property of the chosen fluid and can be 
computed using the laws of thermodynamics and 
the pressure and temperature for the individual 
experiments. The pressure gradient is expressed 
by a force balance (momentum conservation)

There is a remaining unknown in the equation, 
namely λ, which is known as the friction factor. An 
important step in any data science work is to inves-
tigate the data by visualization. We will plot the fric-
tion factor instead of the pressure gradient, but we 
still have the challenge of selecting the parameters 
that the friction factors should be plotted against. 
Again, from fluid mechanics we know the impor-
tance of the Reynolds number Re, and we select 
that as our x-value. Applying this transformation 
on all the experiments results in Figure 1 ►. Note 
that we also did a log transformation of both axes.

There are three important observations: 

1. The transformation collapses all the input 
features into one (Reynolds number). Hence, our 
model Y=f(X) will be λ=f(Re)

2. There seems to be a change in the trend of the 
friction factor around Reynolds number 2300. 
This is well-known from fluid mechanics and is 
the transition from laminar to turbulent flow. 

3. By using the log transformation, the friction 
factor looks very close to linear for Reynolds 
numbers less than 2300 and something similar 
to a slowly exponentially decaying function for 
Reynolds numbers larger than 4000. It seems like 
a good idea to change our model to (λ) =f((Re)).

Figure 2 ► shows the result of a linear regression 
for Re<2300 and a Gaussian Process regression for 
Re>4000.

The transformation reduced our five-parame-
ter input space to one parameter (the Reynolds 
number), greatly reducing the data needed. It also 
transformed the problem into a mostly smooth 
problem with a linear part and a slowly decaying 
part. Importantly, it also allowed us to isolate and 
model the discontinuous behavior around Re=2300.

The log transformation from a strongly nonlinear 
behavior to a more linear behavior reduced the 
need for data. In addition, it also makes it easier to 

Fig. 1: Single-phase pipe flow experiments from 
Oregon (blue) and Princeton (green).

Fig. 2: Linear regression model for Re<2300 and 
Gaussian process regression for Re>4000.
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impose regularization in the model, making it less 
sensitive to noise in the data.

Note that it is possible to fit a model to the entire set 
of data. As an example, a three-layer feedforward 
neural network gave good predictions. However, 
the extrapolation property for lower Reynolds 
numbers was poor. The linear model has excel-
lent extrapolation properties, since it captures the 
correct physics in the transformed space.

One final but very important lesson from this exam-
ple: We know from fluid mechanics that there exist 
well-established models for the friction factor, like 
the Colebrook model. From this we know that the 
friction factor is also a function of the relative pipe 
roughness 

something that is supported by other experiments. 
The pipes from the Oregon and Princeton experi-
ments have different relative pipe roughnesses; 
however, the Oregon data does not contain data 
for Reynolds numbers in the region where the 
wall roughness becomes important (the hydrau-
lic rough region). If we had a more extensive data 
set, our model should have been (λ) =f((Re) , ϵrel). 
This is a reminder that for nonlinear problems the 
importance of a feature may be strongly depen-
dent on the operational conditions, and it may not 
be revealed by the available data.

Feature engineering

The single-phase pipe flow example above shows 
the power of feature engineering, and it illustrates 
two important techniques. 

The first is transformation of features using dimen-
sional analysis. A commonly used starting point 
for dimensional analysis is Buckingham’s Pi theo-
rem, which states that the number of dimension-
less parameters is equal to the number of relevant 
variables minus the number of independent dimen-
sions. Imagine an example with five variables (U, ρ, 
μ, D, ϵ) and three independent dimensions (time, 
length, and mass). According to Buckingham’s Pi 
theorem, that gives us 5-3=2 dimensionless param-
eters, which is the same as the number of input 
parameters to the Colebrook friction factor model. 
A challenge is that there are endless possibilities 
for creating dimensionless parameters. It takes 
experience and sometimes a lot of trial and error 
to find the best set of dimensionless parameters.

A very attractive method in machine learning is 
transfer learning, where knowledge from solv-
ing one problem can be transferred to a differ-
ent but related problem. One example is to train 
a facial recognition model by training on images 
from ImageNet to learn how to recognize a face 
and then train on a specific person to be able to 
recognize that individual. This is highly attractive 
for problems with scarce data but numerous similar 
problems. An example would be to train a model on 
data from a set of wells instead of each well individ-

ually. For this to be possible a given combination of 
input features from two different wells has to have 
the same output value. For the single-phase pres-
sure drop example, the data from the two different 
labs was comparable when looking at the Reynolds 
number and the friction factor instead of the pres-
sure gradient and the original input variables.

The second technique that was applied in the 
example in the previous section was the inclu-
sion of physics models. In the experiments the 
fluid composition was known and the pressure 
and temperature were measured; however, the 
model needed the fluid properties density and 
viscosity. In some situations the fluid properties 
can be measured separately, but they can also be 
computed using equations of state, the compo-
sition of the fluid, and the pressure and tempera-
ture. By converting the fluid composition, the 
pressure, and the temperature to fluid properties, 
we relieved the machine learning method of the 
burden of learning this complex behavior from a 
scarce data set. Another way of interpreting this 
is that we used our physics knowledge and some 
sensor values to create virtual sensors of the fluid 
properties that are used as input features instead 
of the originally measured pressure and tempera-
ture.

Most sensors are already feature-engineered. A 
temperature sensor can be of the thermocouple 
type, where the electrical voltage between two 
dissimilar metals is measured. The temperature 
is calculated based on the voltage measurement 
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and knowledge of the proportionality constant. 
Another slightly more sophisticated example is a 
Venturi single-phase flow meter, which measures 
the pressure drop across a throat and computes 
the volumetric flow rate based on Bernoulli’s equa-
tion, the continuity equation, and the fluid proper-
ties. The fluid properties can be computed based 
on the fluid composition, the measured pressure, 
and the temperature. Consequently, the majority 
of sensors already incorporate important physics 
knowledge. Feature engineering is just a continu-
ation of this approach.

Feature-engineered variables do not have to 
be perfect in order to be useful. They only need 
to capture the main features of the behav-
ior. The discrepancy will be compensated for by 
the machine learning model. Most mathematical 
modeling techniques have less flexibility in this 
sense. When a functional form is chosen, the 
unknowns in the model are determined by match-
ing data. If the functional form is correct, it results 
in a robust model that can extrapolate with low 
uncertainty. However, if the functional form does 
not capture the true physics, it has no way of 
compensating for it. A simple example would be 
to fit a linear model to a quadratic function. The 
mathematical model will never be correct, while a 
machine learning model that takes the linear model 
as an input feature will be able to correct for the 
missing physics, at least in the range of the data.

Proxy models

When optimizing a process we do not only need to 
know the current state but also how changes in 
operational conditions will influence the outcome 
we are trying to optimize. This usually requires 
numerous calls to our model f. If f is a computation-
ally expensive model, for example a physics simu-
lator, it may be impossible to compute the optimal 
operational conditions fast enough for the oper-
ator to act on the advice. An added challenge is 
that a simulator may produce no results for certain 
input conditions (crash), or it may have a nons-
mooth behavior as a function of some of the control 
parameters. This creates additional challenges for 
the optimizer.

A well-known technique from optimization is the 
use of proxy models. Instead of optimizing on the 
full model f, we optimize on an approximation model 
f. One technique is to create f by fitting a machine 
learning method to presimulated results from 
a physics simulator. For a sufficiently large data 
set the proxy model will inherit the accuracy and 
predictive capabilities of the simulator while having 
the evaluation speed and robustness of a machine 
learning model, provided the model is not used 
outside the range of the training data. A remedy 
for evaluations outside the available data set of f is 
to automatically run the simulator for those eval-
uations, extending the training set and retraining 
the machine learning model f.

Customizing the loss function using 
physics knowledge

Most out-of-the-box machine learning models use 
unweighted least squares as the default loss func-
tion. However, in reality, the consequence of errors 
is dependent on the operational conditions. When 
predicting surge volumes arriving at the receiving 
facility, large relative errors for small surges have 
little or no consequence, but medium errors for 
larger surges may lead to trips, emergency flaring, 
or in the worst case accidents. This is particularly 
important if the data set is biased to the less prob-
lematic area, which is very common due to oper-
ational practicalities; most historical operations 
have occurred safely, so there is little if any data for 
irregular conditions.
 
There are numerous ways to include this knowl-
edge into the loss function, and it is an important 
technique to ensure that during training we priori-
tize the accuracy of the model in the region where 
accuracy is important. A simple approach is to 
increase the weight in the loss function for data 
in the region where errors are critical. 

This needs to be combined with rebalancing the 
data set. For a classification problem the groups 
are explicitly given, making it easy to detect imbal-
ance. For our regression problem the groups are 
not explicitly given, but our understanding of phys-
ics will help us determine how to classify the data 
into groups so that we can evaluate if we have an 
unbalanced data set and hence compensate for it. 
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The same weighted loss function technique can 
be used for weighting data based on other impor-
tance factors such as the age of the data, assum-
ing that the field is changing and older data is less 
relevant than newer. 

It is equally important to report the error from the 
test data not only as a single number but as a func-
tion of the parameters that characterize the crit-
icality of an error. This information is crucial to be 
able to understand the uncertainty and correctly 
determine safety margins for the model.
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Cognite takes a hybrid approach to artificial intelli-
gence, combining the best of data-driven machine 
learning and physics-based modeling.

Cognite differentiates from pure AI companies 
with a hybrid data science model unique to indus-
trial reality.

Oil-water separation

Solution: A smart monitoring system that visu-
alizes all data relevant for troubleshooting water 
contamination and a recommender system with 
an underlying machine learning model to identify 
worst actors related to high oil-in-water concen-
trations.

Impact: In one example, the solution saved an oil 
and gas operator an estimated $6 million a year. 

READ MORE→

Cognite’s approach

Produced water disposal is one of many chal-
lenges at oil and gas facilities with high water-
cut wells. Keeping the oil contamination level in 
the produced water below environmental limits 
requires an efficient separation process. Obtaining 
produced water that meets environmental regu-
lations requires an efficient separation process, 
which is governed by a series of complex physical 
interactions.

Significant production losses are associated with 
situations with high oil-in-water levels, because 
safely discharging water to the sea requires slow-
ing down production while troubleshooting for 
worst actors on the facility.

To identify what could be causing high oil-in-water 
concentration, operators often take spot sample 
measurements at different parts of the produc-
tion facility and then perform mitigating actions 
once the bad actor is located. Operators rarely 
have much information to determine where to start 
the search, however, which can make finding the 
bad actor a time-consuming process. Each spot 
sampling campaign can take up to two hours and 
occur multiple times a week. 

Separation of oil-water dispersions is a complex, 
multistage process that involves gravity settling 

(separators), centrifuging (hydrocyclones), floa-
tation (degasser), and the use of chemicals. In 
situations where the disposed water is highly 
contaminated, it is extremely difficult to determine 
which part of the plant is responsible for the prob-
lem. Possible causes range from excessive emulsi-
fication due to wellhead choke setting to inefficient 
floatation in the degasser due to unfavorable pres-
sure.

To make matters even more complicated, oil and gas 
plants undergo continuous adjustments imposed 
by control room engineers in order to maximize 
production and minimize the risk of hazards. 
Furthermore, occasional modifications to the plant 
composition, such as the startup of a new well or 
replacing equipment or injection chemicals, may 
have a significant impact on the produced water 
treatment.

It is practically impossible to accurately model 
oil-in-water concentrations based on live opera-
tional conditions with a traditional (deterministic) 
approach. Even the most sophisticated process 
simulators would require tremendous computa-
tional resources and skilled engineers and still yield 
undeterminable accuracy.

The only realistic approach to modeling oil in water 
is by means of regression, using computing power 
to find hidden patterns and relationships between 

Physics-guided machine learning solutions

Data-driven
machine learning

Physics-driven modeling
and virtual simulations

Hybrid AI
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operational conditions (X) and the oil-in-water 
concentration (Y). Furthermore, since the prob-
lem is both multivariate and nonlinear in nature, we 
have to solve a nonlinear multivariate regression 
problem. 

The technical toolkit required to solve this sort 
of problem exists within the machine learning 
domain. It includes ensemble algorithms such 
as gradient boosted trees (GBT) and recurrent 
neural networks (RNN). One important difference 
between these algorithms is the way temporal 
coherency is embedded in their respective archi-
tectures. GBTs consider each row of the data set as 
a system snapshot, while RNNs take into account 
the sequential nature of time series data. 

Addressing obstructive events in historical data, 
for example the replacement of equipment or a 
chemical compound, requires a dynamic machine 
learning approach. One such approach is to auto-
matically retrain and reconfigure models until vali-
dation criteria are met. 

The output from machine learning models needs 
to undergo comprehensive processing in order to 
render it interpretable. Machine learning interpret-
ability libraries such as SHAP and LIME let users 
extract local importance of features with respect 
to any given target prediction. This is an essential 
aspect of the process, as the importance measure 
will in turn be associated with a potential root cause 
of local oil-in-water observation. 

Physics and domain knowledge are included in the 
model through an extensive data engineering pipe-
line. First-principle physics modeling of key physical 
processes, such as choke dispersion and separator 
efficiency, provides a way to compress the variable 
space and reduce the number of dependent vari-
ables in the data set. Multiphase flow and process 
simulators Digital Oil Field and Unisim, respectively, 
enrich the data set with key data such as fluid prop-
erties and well-specific flow rates. The flow rates 
can be used to calculate the time delay between 
wellhead and point of discharge. This time shift must 
be taken into account, as some wells are located 
more than 30 km from the processing facility.

The choke dispersion model considers an energy 
balance between hydrodynamic kinetic (Eh) energy 
and potential surface energy (ES). The former is 
a function of the pressure-drop ΔPchoke, which in 
turn depends on the flow rate Qm across the choke, 
the kinematic mixture viscosity vm, and k-factor. 
Whereas the latter depends on the droplet diam-
eter ddrop and surface tension σ, where the drop-
let diameter is modeled using Hinze’s model and 
the surface tension is interpolated from a lookup 
table generated using offline thermodynamics 
simulations. The ratio Eh/ ES provides an indica-
tion of the dispersion level that arises from shear 
forces induced by the choke settings. The ratio is 
expressed as 

where dpipe is the pipe’s inner diameter.

The ratio also enables us to compress the input 
variable space significantly and reduce the number 
of dependent features to train on. Although the 
absolute value of the dispersion levels can be 
inaccurate as a result of the leading order approx-
imation and lack of tuning, when used as an input 
parameter to machine learning, it showed signifi-
cant improvement of the model predictions as well 
as the importance allocation. 

The separator efficiency model was formulated by 
means of a time-scale balance approach. Here the 
buoyancy time scale that arises from the Stokes 
drag and buoyancy force is compared to the separa-
tor residence time scale of the water body. This 
model results in a dimensionless parameter that 
comprises multiple independent variables, includ-
ing flow rates, temperature, separator geometry, 
water level, and fluid properties. Instead of intro-
ducing each parameter as an input to the machine 
learning model, this single nondimensional param-
eter represents the entire separator. When impor-
tance is allocated to this parameter, the user of the 
tool will understand that this particular equipment 
is behaving abnormally.

©
C

O
G

N
IT

E 
20

23
 —

 C
O

G
N

IT
E.

C
O

M
12

WHY COGNITE DATA FUSION® → BENEFITS FOR YOUR TEAMS → CONTACT SALES →

http://www.cognite.com
https://www.cognite.com/en/why-cognite-data-fusion
https://www.cognite.com/en/product/roles/subject-matter-experts
https://www.cognite.com/contact


Fig. 3: An illustration of the choke dispersion model. Fig. 4: Separator efficiency model.

Figure 5 ► shows the information available to 
the operator in the control room. The upper part 
of the dashboard shows the feature importance 
for the different components. The schematics to 
the left show the influence of the different well 
templates and the main separation components, 
while the table to the right shows the number for 
each component in the separation train. The lower 
graph shows the predicted oil-in-water concen-
tration in blue and the measured concentration in 
green. The predictions match the measured values 
well except for a few short time-scale incidents.

Fig. 5: Schematics of the major components in the 
separation trains. The first plot shows the feature 
importance of the different well templates and 
separation stages. The second plot shows the 
predicted and measured oil-in-water concentra-
tion.
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Virtual	flow	meters

Solution: A combination of physical modeling of 
fluid flow with data analytics on sensor data, creat-
ing a virtual window into the production system 
that continuously supplies gas, oil, and water flow 
rates.

Impact: In one example, the solution saved an oil 
and gas operator an estimated $5-10 million a year 
by giving petroleum engineers and field opera-
tors 24-hour access to granular insights for better, 
faster decision-making.

READ MORE→

Cognite’s approach

Flow rates of gas, hydrocarbon liquid, and water 
are key inputs to most optimization solutions. 
Upstream of separation, the flow is a mixture of 
gas, oil, and water, making measurement a difficult 
task. Multiphase flow meters (MPFM) can measure 
two- or three-phase flow using different tech-
niques, but these meters are expensive and need 
frequent calibration in order to produce reliable 
measurements. 

To understand a multiphase virtual flow meter 
(VFM), it is useful to understand how a typical MPFM 
works. Designs may differ, but the operational prin-
ciple of most meters is as follows: The fluids are 

mixed and pass through a throat where the pres-
sure drop is measured, similar to most single phase 
flow meters. The average density is measured 
using a gamma densitometer or an x-ray sensor, 
and the water fraction is measured using a capaci-
tance or conductance sensor. The fluid properties 
are computed based on the fluid composition and 
the measured pressure and temperature, and the 
rates of the different phases are then computed 
based on a mathematical model for the pressure 
drop across the throat.

A virtual flow meter is a virtual sensor that uses the 
existing sensors (as shown in Figure 6 ►) combined 
with a mathematical model of the multiphase flow. 
Many commercial vendors offer VFMs. What these 
VFMs have in common is that they are based on 
rigorous models for conservation of mass, momen-
tum, energy, and volume. These are sophisticated 
solutions that require little to no data, can predict 
outside the available data, and can be used for 
look-ahead and planning applications. A virtual flow 
meter based on physics-guided machine learning, 
in comparison, uses simpler and more approxima-
tive physics models.

Fig. 6: An illustration of a well and the 
commonly available sensors used in a virtual 
flow meter.
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We have derived a list of different engineered 
features where some of the features require 
additional information, such as a CV curve for the 
choke, fluid properties, and information about the 
wellbore. If any part of this information does not 
exist, it can either be approximated or a different 
engineered feature can be selected. Remember 
that the engineered feature does not have to be 
exact, but it should approximate the correct trend. 
The purpose of the machine learning model is to 
compensate for the imperfections in the physics. 

An initial observation is that the well tests are 
commonly reported at standard conditions, but 
the physics is governed by the in-situ conditions. 
The conversion from standard conditions to in-situ 
conditions requires information about the fluid 
densities as a function of pressure and tempera-
ture, as well as flashing between liquid and gas. 
If the correct information is not available, it can 
be approximated using ideal gas law for gas and 
assuming incompressibility for the liquids.

The production choke can be viewed as a single-
phase flow meter with an adjustable throttling. 
From Bernoulli’s equation we can derive a simple 
valve equation which relates the measured pres-
sure drop across the valve dPchoke=PWH– PDC to the 
mixture’s volumetric flow rate, the flow area in the 
choke, and fluid properties. The valve opening is 
usually reported as the fraction of the stem travel, 
and we convert it to the flow area using the choke 
CV curve. 

The pressure drop in the well is the sum of the 
hydrostatic pressure drop in the well and the fric-
tional pressure drop

where ρM is the mixture density, g is the acceler-
ation due to gravity, H is the difference in height 
between the bottomhole and wellhead pressure 
sensors, L is the length of the wellbore between 
the bottomhole and wellhead pressure sensors, D 
is the wellbore inner diameter, ReM is the mixture’s 
Reynolds number, ϵrel is the relative wellbore rough-
ness, and U is the average velocity of the fluid 
mixture.

From our single-phase flow experiment example, 
we already know how to estimate the frictional 
pressure drop, assuming homogeneous mixing of 
the phases. The densities for the different phases 
and the height difference between the pressure 
sensors gives the hydrostatic pressure drop. 
Note that both the frictional and hydrostatic pres-
sure drop estimations require an estimate of the 
cross-sectional fraction of each phase.

Assuming low velocity, the pressure drop will be 
dominated by the hydrostatic pressure drop, and 
hence we have a good estimate of the gas-liquid 
ratio by making an assumption of the water cut. 
Since the density difference between oil and water 

is low, it is a relatively robust estimation. This is an 
indication that the well pressure drop dPwell has 
a strong influence on determining the gas-liquid 
fraction. From this we understand how error and 
drift in these sensors affect the model.

The heat balance in the well is another import-
ant engineered feature. Again, this is related to 
the mass flow F, the specific heat capacity of the 
phases Cp, the heat transfer coefficient Ω, and an 
estimation of the surrounding temperature Tr.

The difference in heat capacity between oil and 
water is usually significantly larger than the differ-
ence in density, indicating that the heat balance 
engineered feature strongly influences the esti-
mation of the water cut. From our experience, the 
wellhead temperature sensor is often the most 
unreliable sensor. If it is poorly insulated, it is 
strongly affected by weather conditions, causing 
an increased uncertainty in the water-cut predic 
tions. However, if weather information exists, a 
machine learning-based model will to a certain 
extent be able to compensate for this. Unknown 
or uncertain parameters, such as the heat transfer 
coefficient Ω and the rock temperature Tr are effec-
tively estimated by the machine learning algorithm.

Note that several of the parameters may change 
along the wellbore. In this simple approach, this 

FCp(TBH–TWH)=ΩπDL(Tf–Tr)
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is handled by using a single representative value. 
More sophisticated approaches would integrate 
along the wellbore. 

Figure 7 ► shows comparisons of the volumetric 
oil (Qo) and water (Qw) rate between well test data 
(black line) and virtual flow meter predictions (red 
line), using the approach detailed above. Note that 
the well test data in the comparison was not part 
of the training data set for the virtual flow meter 
model.

Fig. 7: Comparison of well test data and virtual flow meter results (the x-axis 
corresponds to the data points time stamp). The first plot shows the volumet-
ric oil rate Qo, while the second plot shows the volumetric water flow rate Qw.
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AI and machine learning should not be considered 
a goal in digitalization, but rather seen as another 
tool in the toolbox available to heavy-asset indus-
tries. Using machine learning to replace an existing 
solution is not disruption; however, when machine 
learning is used to solve previously unsolvable 
problems, or when it significantly outperforms 
existing solutions, then it becomes a disruptive 
tool. Combining our understanding of physics 
with data is the key to unlocking the potential of 
machine learning in industrial settings.

Some consider the addition of physics a sign of 
defeat, since the appeal of machine learning is that 
models are supposed to find relations themselves 
based on nothing but data. This couldn’t be further 
from the truth. The combination of physics and 
data science represents an opportunity to gain 
a competitive advantage. Machine learning finds 
patterns from information, and by adding physics, 
we provide more information — and more impor-
tantly, more accurate information.

The oil and gas industry already has the subject-mat-
ter experts needed to take advantage of phys-
ics-guided machine learning. Now the challenge 
is to set up cross-disciplinary teams with both 
subject-matter experts and data scientists, and 
to create a common working language that both 
camps can speak as they collaborate.

The building blocks are there: the data, the tools, 
and the domain knowledge. It is up to the indus-
try to put them all together to unleash the value 
potential that lies ahead.

Conclusion
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Explore more insights from Cognite
Want to know more about our product?

WATCH	NOW	→

Learn from Cognite customers and 
product managers how Cognite 
Data Fusion® simplifies and stream-
lines the data experience of a 
subject matter expert.

PRODUCT TOUR

Customer interviews and financial 
analysis reveal an ROI of 400% and 
total benefits of $21.56M over three 
years for the Cognite Data Fusion® 
platform. 

ANALYST REPORT

READ	THE	REPORT	→

Discover how Cognite Data Fusion® 
makes data more accessible and 
meaningful, driving insights that 
unlock opportunities in real-time, 
reduce costs, and improve the 
integrity and sustainability of your 
operations.

CUSTOMER STORIES

GO	TO	STORIES	→

Discover our rich catalog of indus-
try insights and technology deep 
dives.

BLOG

READ	OUR	NEWEST	BLOGS	→
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